If it's not what You are looking for type in the equation solver your own equation and let us solve it.
30x^2+21x-36=0
a = 30; b = 21; c = -36;
Δ = b2-4ac
Δ = 212-4·30·(-36)
Δ = 4761
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4761}=69$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(21)-69}{2*30}=\frac{-90}{60} =-1+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(21)+69}{2*30}=\frac{48}{60} =4/5 $
| 13x-3+3x+2=180 | | -18+3/8(16-40n)=8 | | -2/5(x+3)=-4 | | 8x-1=5x-1 | | 9s+3/3=57/3 | | 4(2-3n)-3(n-6)=-19 | | 5/3n=-20 | | (A-250)x5=1355 | | 1/4a+1=19/4 | | 17y+9=11y+3 | | .67b+5=20−b | | x/3+3=-3 | | 6t^2-12t-36=12 | | x/9+1=82 | | Y/x+2/1= | | |b+4|=2 | | 2n+2(n-5)=-2(n-8)+8n | | X2+4x-196=0 | | 8-0.8f=-14-2f | | 7+1/6h=2(h-2) | | -12x-9=-153 | | 2x-15-12x=13 | | 9x+1-6x=25 | | (-16-2y)÷-2-y=4 | | 6x-4(2x+1)=21 | | 10–2t=-3t | | 3(s+3)+4.8=4(s+3.2) | | 24-8x=7x+2 | | 4x+x-2x@3=54 | | -1/3+1/2y=-7/5 | | 3y+-2=y/2 | | w/18=7/36 |